17	Suppose that V_1, \dots, V_m are finite-dimensional subspaces of V . Prove that
	$V_1 + \cdots + V_m$ is finite-dimensional and

$$\dim(V_1+\cdots+V_m)\leq\dim V_1+\cdots+\dim V_m.$$

The inequality above is an equality if and only if $V_1 + \cdots + V_m$ is a direct sum, as will be shown in 3.94.

sum, as will be snown in 3.94.	
Suppose that Vi, In are finite	
Pase case $\lfloor (m=2) \rfloor$ NTS: $\dim(V_1+V_2) < \dim(V_1) + \dim(V_2)$	
$\frac{1\sqrt{15}: (1/m)(\sqrt{1+\sqrt{2}}) \leq (1/m)(\sqrt{1}) + (1/m)(\sqrt{2})}{\cdot}$	
Let d ₁ = dim (V ₁) and	
$d_2 = dim(V_2)$	
Since There exist Dasis	
Further, $V_1 = span(Y_1,, Y_d)$	
$V_2 = Span\left(\gamma_1^2, \gamma_{d_2}^2\right)$	
Let $U_1 \in V_1$ and $U_2 \in V_2$	
Then $U_1 = 0$, $Y_1 + + 0$, Y_0 , forsome 0_1 , $0 \in \mathbb{F}$ $U_2 = 0$, $Y_1 + + 0$, $Y_0 = 0$, $Y_0 = 0$, $Y_0 = 0$	
$U_1 + U_2 \in Span(\gamma', \gamma'_2, \gamma'_2, \gamma'_4, \gamma'_2, \gamma'_2)$	
Thus, $U_1 + U_2 \subset Span(\gamma', \gamma', \gamma', \gamma', \gamma', \gamma', \gamma', \gamma', \gamma', \gamma', $	
Thus, $\dim(U_1 + U_2) \leq d_1 + d_2 = \dim(U_1) + \dim(U_2)$	

